
J .  Fluid Me&. (1966), W O ~ .  26, part 1, pp.  145-161 

Printed in Great Britain 

145 

Hydrodynamic stability of the boundary layer 
on a continuous moving surface 

By F. K. TSOUt, E. M. SPARROW 
University of Minnesota, Minneapolis, Minnesota 

AND E. F. KURTZ 
Massachusetts Institute of Technology, Cambridge, Massachusetts 

(Received 30 August 1965 and in revised form 12 January 1966) 

The characteristics of the laminar boundary layer on a continuous moving surface 
are described and an experiment is performed to demonstrate that such a flow is 
physically realizable. The hydrodynamic stability of the flow is analysed within 
the framework of small-perturbation stability theory. A complete stability 
diagram is mapped out. The critical Reynolds number is found to be substantially 
higher than that for the Blasius flow and, correspondingly, the critical layer lies 
closer to the wall. The disturbance amplitude function and its derivative are 
numerically evaluated, from which are derived the vector flow field of the 
disturbance, the resultant flow field (main flow plus disturbances), the root-mean- 
square distributions of the disturbance velocity components, and the distribu- 
tions of the kinetic energy and the Reynolds stress. The energy criterion for 
stability is also investigated and is found to be consistent with the solutions of 
the eigenvalue problem. 

1. Introduction 
In  recent years, consideration has been given to a somewhat novel type of 

boundary-layer flow that is designated by Sakiadis (1961 a, b ,  c) and by Koldenhof 
(1963) as the boundary layer on a continuous moving surface. A model of this 
flow situation is shown in the left-hand diagram of figure 1. As pictured in the 
figure, an unending plane sheet issues from a slot and moves to the right through 
an otherwise quiescent fluid environment. The velocity of the sheet is constant. 
Owing to the motion of the sheet, a fluid flow is induced. With increasing down- 
stream distance from the slot, the region of induced flow penetrates deeper and 
deeper into the environment. In  other words, the thickness of the boundary layer, 
shown as a dashed line in the figure, increases in the direction of motion of the 
surface.$ As will be described later, the present authors have demonstrated by 
experiment that such a flow is physically realizable. 

7 Present address : Drexel Institute of Technology, Philadelphia, Pennsylvania. 
$ It has been pointed out to the authors that a similar situation occurs in the wall 

boundary layer behind a shock wave moving into a stationary fluid (e.g. as in a shock tube). 
If the co-ordinates are fixed with respect to the shock, then the wall moves and the boundary 
layer grows in the direction of motion, see Mirels (1961). 

10 Fluid Mech. 26 
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The aforementioned may be contrasted with the boundary-layer growth in 
the conventional Blasius flow. Consider a semi-infinite flat plate moving through 
an otherwise quiescent fluid. In  this case, it  is readily understood that the 
boundary layer grows in a direction that is opposite to that in which the plate is 
moving. Thus, the continuous-surface boundary layer displays a growth charac- 
teristic just reversed from that of the Blasius flow. 

Skimmer plate 
(fixed) 

FIGURE 1. Schematic representation of the boundary layer on a 
continuous moving surface. 

The laminar boundary layer on a continuous moving surface has been analysed 
by Sakiadis (196lb). It was shown that, by a similarity transformation, the 
momentum equation reduces identically to the Blasius equation. However, the 
boundary conditions differ from those of the Blasius problem, and, corre- 
spondingly, the solution is different. 

The present investigation is concerned with the hydrodynamic stability of the 
boundary layer on a continuous moving surface. The analysis makes use of small- 
perturbation stability theory together with a numerical method for solving the 
resulting eigenvalue problem. A complete stability diagram is mapped out that 
shows not only the neutral stability curve but also includes amplification-factor 
contours. The critical Reynolds number marking the onset of instability is 
deduced from such a diagram. Disturbance amplitude functions are computed 
for stable, neutral, and unstable conditions. With these, the disturbance velocity 
components are evaluated. The vector velocity field of the disturbance is mapped 
out, and the resultant flow field (main flow plus disturbance) is constructed. In  
addition, the distributions of the root-mean-square velocity fluctuations, 
the kinetic energy, and the Reynolds stress are determined. Attention is then 
turned to the energy-balance equation, wherein the stabilizing dissipative 
term is opposed by the de-stabilizing Reynolds stress term. The aforemen- 
tioned balance is evaluated both on and adjacent to the neutral stability 
curve. 

2. The mainflow velocity profile 
The starting point for the analysis of the laminar velocity field is the boundary- 

layer momentum equation and the continuity equation. The co-ordinates x and 
y are illustrated in the left-hand diagram of figure 1, and the corresponding 
velocity components are U and V .  By employing a similarity transformation as 

(1) 
follows 

7 = Y .J(w4), @ = l / (vxU,)F(7) ,  
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the aforementioned conservation laws reduce to the Blasius equation, that  is 

F'" + +FF" = 0. (2)  

U = V,F', V = i J ( vU, / z )  (73"-F). (3) 

Furthermore, by differentiation of the stream function $, one obtains 

At the moving surface ( y  = 0), the no-slip condition of viscous flow requires 
that U = U,. Moreover, the streamwise component of the velocity vanishes in 
the ambient fluid, that is, as y + 00. The foregoing, taken together with the 
impermeability condition V = 0 a t  y = 0, lead to 

F(O) = 0, F'(0)  = 1, F ' ( a )  = 0. (4) 
The boundary conditions on F'(0) and F ' ( a )  are just reversed relative to those 
of the classical Blasius problem. 

0 4 

FIGURE 2. Boundary-layer velocity profile. 

x (in.) us (ft./see) x (in.) Us (ft./sec) 

0 2.67 34.3 a 4.76 44.7 
a 4.86 34.3 5.86 44.7 
V 5.96 34.3 + 2.57 53.6 
D 2.57 44.7 X 4.76 53.8 

The solution of equation (2) subject to the boundary conditions (4) is readily 
accomplished by computer methods and need not be dwelled upon here. The value 
of F"(0) needed for the numerical forward integration is found to be - 0.44375. 
Other characteristics of the velocity solution that are useful in the forthcoming 
stability analysis are the displacement thickness 6" and the boundary-layer 
thickness IS. The latter is defined as the distance from the wall a t  which U / V ,  has 
diminished to approximately 0.1 per cent. These quantities are, respectively, 

IS* = 1.616 ~ ( u x / ~ ) ,  6 = 9.36 J(m/q). ( 5 )  
10-2 
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Another result that stems from the solutions is the fact that the transverse 
velocity V is negative; that is, there is an inflow from the environment into the 
boundary layer. In contrast to this, the transverse velocity in the conventional 
Blasius flow is positive. 

As a prelude to the stability analysis, it  may be of interest to describe briefly 
an experiment that was performed by the authors to verify the physical reality 
of the boundary-layer flow just analysed. The details of the experiment may be 
found in the dissertation of Tsou ( 1  965) from which this paper is drawn. In essence 
the continuous moving surface was modelled by a 12 in. diameter rotating drum 
shown in the right-hand diagram of figure 1. A skimmer plate, fixed in space, was 
employed to create the boundary-layer flow. Velocity profiles were measured with 
a flattened impact probe that was arranged to move normal to the cylinder at 
various circumferential locations. 

The velocity profiles thus determined are shown in figure 2 along with a solid 
line that represents the analytical solution. The abscissa is the similarity variable. 
The various symbols denote measurement stations situated at different distances 
from the skimmer plate and different surface speeds Us. The x co-ordinate 
employed in the figure is corrected to account for any initial boundary-layer 
development on the skimmer. Inspection of the figure shows that not only are 
the data for the various conditions unified by the use of the similarity variable, 
but also that there is very good agreement between analysis and experiment. The 
data tend to fall slightly above the curve a t  the larger values of 7; this is believed 
to be caused by disturbances in the room. In the opinion of the authors, the 
experiment just described demonstrates that the boundary layer on a continuous 
moving surface is a physically realizable flow. 

3. The stability problem 
The formulation of the stability problem follows along lines that are well 

documented for boundary-layer flows, for instance, Schlichting (1960). For 
purposes of analysis, the mainflow is regarded as a parallel flow. Upon this are 
superposed two-dimensional disturbances u', v' and p' that are functions of the 
co-ordinates x, y and the time t. It is assumed that both the mainflow and the 
resultant flow (mainflow plus disturbances) satisfy the Navier-Stokes equations. 
Moreover, those inertia terms that are quadratic in the disturbance velocities are 
regarded as negligible. On this basis, and after eliminating the pressure pertur- 
bation p' ,  a pair of linear partial differential equations is derived for the distur- 
bance velocities u' and v'. 

It is then postulated that a typical mode of the disturbance has the form 

(6) $ = qqy) eia(x-ct) 

in which the wave number a is equal to 27r/h, where h is the wavelength. c is a 
complex quantity that may be decomposed as 

c = c, + ic,. (7)  

The real part c, is the velocity of propagation of the wave and the imaginary part 
ci is the amplification factor. It is evident that the flow is stable, neutrally stable, 



Xtability of boundary layer on a moving surface 149 

or unstable relative to the disturbance, according to whether ci is less than, equal 
to, or greater than zero. $(y) is the amplitude of the disturbance and is, in general, 
complex. By differentiating (6), one finds 

u' = $'(y) eia(~-ct) ,  v' = - ia$(y)  eidz-ct). ( 8 )  

As a final step in the formulation of the stability problem, the foregoing 
relations for u' and v' are introduced into the linearized equations of motion, 
from which there follows 

(8-C) (02-a~)$-  ( O T ) ?  = - (i/aRe) (P-a2)2$. (9) 

Y = y/S, D = d / d Y ,  (10a) 

This is a dimensionless form of the famous Orr-Sommerfeld equation in which 

8 = UlV,, C = c / q ,  a = as, Re = U,S/v ,  $ = $/(&a). ( l o b )  

The boundary-layer thickness is defined here as the distance from the wall a t  
which U/U, g 0.001, see (5). 

The disturbance velocities u' and v' must vanish both at the surface and in the 
distant environment; that is, 7 and 7' are zero at Y = 0 and Y -+ co. In  the 
present analysis, in which a numerical solution is contemplated, it is necessary to 
know the boundary conditions at  the edge of the boundary layer. For the region 
Y = y/6 1, the flow may be regarded as inviscid such that the disturbance 
equation reduces to 

A solution of the foregoing that approaches zero for Y -+ 00 is 7 - e-aP. Thus, 
the boundary conditions can be stated as 

- 
$1' - a2$ = 0. (11) 

- 
$(o) = P(O) = 0, $ - e -ay  for Y 2 1. (12) 

The mathematical system consisting of (9) and (12) is readily identified as an 
eigenvalue problem. For prescribed values of a and Re, the task is to find the 
corresponding value of C for which a solution is possible. There are two general 
approaches to the aforementioned eigenvalue problem. One is the classical tech- 
nique of asymptotic expansions, which involves functional analysis. This method 
is well documented by Lin (1955). The second approach is numerical in nature and, 
owing to the general availability of digital computers, has received much atten- 
tion in recent years. The present authors have selected the numerical approach 
for solving the stability problem for the continuous moving surface. 

There are two numerical schemes that have been applied with good effect. One 
of these is based on a step-by-step forward integration of the governing differential 
equation, for instance Nachtsheim (1963, 1965). The other employs a finite- 
difference representation, such that the governing differential equation is 
replaced by a set of algebraic equations. The latter method has been adopted for 
the present problem. 

The finite-difference scheme for investigating the stability of parallel flows 
appears first to have been used by Thomas (1953) for the case of plane PoiseuilIe 
flow. More recently, i t  has been applied to boundary-layer flows by Kurtz (1961) 
and Kurtz & Crandall (1962) and by others. 
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The essential features of the finite-difference scheme are as follows. The region 
0 6 Y < 1 is subdivided into N points and an algebraic representation of the 
Orr-Sommerfeld equation is written for each interior point. For the boundary 
points, Y = 0 and Y = 1, special equations are written that take account of the 
boundary conditions. In  formulating the finite-difference form of the Orr- 
Sommerfeld equation, a central-difference representation is supplemented by a 
subsequent change of variable. The net result of these operations is to provide an 
algebraic approximation of the participating derivatives having truncation errors 
of order only h4, where h is the step size. 

By proceeding as described above, a set of N linear, homogeneous, complex 
algebraic equations is generated. The condition for the existence of a solution is 
that the determinant of the coefficient matrix be zero. The resulting secular 
equation containing both real and imaginary parts is 

F(a, Re, C)  = 0. 

If a solution of (13) is available for a given pair of values (a, Re), then the solution 
corresponding to a nearby pair can be obtained by applying a root-finder tech- 
nique? first introduced by Muller (1956). The root that is needed to initiate the 
root-finder technique is deduced by study of a contour map (lines of constant IF\) 
in the complex C plane. The details of how this search is carried out is discussed 
by Kurtz (1961) and Tsou (1965). 

The solution of the eigenvalue problem as described above provides all the 
information necessary to construct a stability diagram, that is, curves of constant 
Ci in the (a, &)-plane. Moreover, once the eigenvalues are known, then the eigen- 
functions can be found by solving the system of linear algebraic equations. From 
the eigenfunctions, all details of the disturbance flow field can be deduced. 

The foregoing discussion provides only a brief account of the numerical 
formulation of the stability problem. Full details are given by Tsou (1965) and in 
the published papers of Thomas (1953) and of Kurtz & Crandall (1962). In  
carrying out the present numerical solutions, careful consideration was given to 
the size of the finite-difference subdivisions. For various pairs of (a, Re), the 
secular equation (13) was successively solved for N = 40,50, . . . ,100, where N is 
the number of equally spaced points in the range 0 6 Y 6 1. By extrapolating to 
N = co, it  was demonstrated that the results for N = 100 constituted a highly 
accurate solution to the problem. This subdivision was therefore employed in the 
calculations. The eigenvalues thus determined are tabulated in Tsou (1965). 

4. The stability diagram and the critical Reynolds number 
The solutions of the eigenvalue problem can be brought together on a stability 

diagram as shown in the lower part of figure 3. This diagram consists of curves of 
constant Ci in the (a, Re)-plane. In  this context, the latter quantities are based on 
the displacement thickness S* as the reference length, that is 

a* = as*, Re* = U,S*/v .  (14) 

t A computer sub-routinc is available as share no. RWR'F 21. 
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The contour line corresponding to Zi = 0 is called the neutral stability curve 
inasmuch as it separates the unstable region (inside the curve) from the stable 
region (outside the curve). Five amplification curves characterized by Ci > 0 
are shown inside the neutral stability curve. It is interesting to note that the 
innermost of these is a closed curve. It is believed that the other amplification 
curves would show this same characteristic if extended to  higher values of Re*. 

0 1  

2 4 6 10 20 40 60 100 200 400 600 
~ e *  x 10-3 

FIGURE 3. Stability diagram. 

If a vertical line is constructed tangent to the neutral stability curve, one finds 
that the corresponding Reynolds number, Re*, is 3600. Below this value, all 
infinitesimal disturbances will die out. Thus, for Re* < 3600, the flow is judged 
t o  be stable according to small-perturbation stability theory. For any Reynolds 
number larger than this critical value, the flow will be unstable in some range of 
a*. Natural disturbances are regarded as being expandable in a generalized 
Fourier series, each term of which has the form of (6). Furthermore, natural 
disturbances are assumed to contain all wave numbers. Therefore, it may be 
concluded that the flow will become unstable for any Reynolds number larger 
than the critical. 

The mainflow velocity distribution for the continuous-surface boundary layer 
does not have a point of inflexion. Correspondingly, the flow is stable according 
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to the theory of inviscid stability. If one associates an inviscid flow with the limit 
of infinite Reynolds number, it  follows that both branches of the neutral stability 
curve have the abscissa axis as their asymptote as Re" --f 00. By inspection of the 
figure, it  is seen that the neutral curve shows trends that are consistent with the 
aforementioned limiting behaviour. 

It is of interest to compare the critical Reynolds number for the continuous 
moving surface just discussed with that for the Blasius flow. This information is 
summarized in table 1. Re, is the Reynolds number based on the streamwise 
co-ordinate x. It is apparent that the critical Reynolds number for the continuous 
surface is substantially larger than that for the Blasius flow. The former is, there- 
fore, a more stable flow. 

Re* Re, 
Continuous surface 3600 4-96 x 105 

Blasius flow (Kurtz & Crandall) 530 0-949 x lo5 

TABLE 1. Comparison of critical Reynolds numbers 

It is the opinion of the authors that this finding is connected with the fact that 
the transverse velocity in the mainflow is inward for the continuous surface and 
outward for the Blasius case. It is believed that the effect of the inflow is to move 
the disturbances nearer the wall, where they are more readily damped. More 
information on this point is to be presented in subsequent paragraphs. 

An adjunct to the stability diagram is provided in the upper portion of figure 3. 
This graph shows the values of (1  - 5,) that correspond to the neutral stability 
curve. The region of instability is quite narrow in this representation. It is 
apparent from the figure that (1 - C,) decreases with increasing Reynolds number. 
This implies that the distance from the wall to the critical layer (i.e. the location 
where a = c, when ci = 0)  is smaller as the Reynolds number increases. 

It is of particular interest to inquire about the location of the critical layer 
corresponding to the critical Reynolds number Re" = 3600. From the upper part 
of figure 3,  one finds that, for this condition, ( 1  - C,) = 0.266. The distance y/6* at 
which = 0.734 follows from the mainflow velocity profile as 0.37. This is to be 
contrasted with the fact that y/S* corresponding to the critical Reynolds number 
for the Blasius problem is about 0.75. It is evident that the critical layer for the 
case of the continuous surface lies much closer to the wall than for the Blasius 
case. It is believed that this is responsible for the larger critical Reynolds number 
of the former. 

5. The details of the velocity field 
The amplitude function 

With the eigenvalues now available, the amplitude function can be determined by 
solving the set of linear algebraic equations that represent the Orr-Sommerfeld 
equation. To make this algebraic system determinate, it  is necessary to specify the 
value of $ at some point in the boundary layer. For convenience, the condition 
# = 1 at Y = 1 was selected. 
- 
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It was thought that a comparison of the amplitude functions for three points, 
one in the stable region, one on the neutral curve, and one in the unstable region, 
would be of interest. To this end, figures 4 (a) and ( b )  have been prepared. The 
conditions characterizing the points are noted in the figures. Figure 4 (a )  shows 
the real parts of $ and $ I ,  respectively denoted as $r and 3;. Although the points 
1, 2 and 3 are well separated, the corresponding distributions of $, and & are 
essentially coincident, within the scale of the figure. 

The distributions of the functions & and $:, which represent the imaginary 
parts of $ and $’, are plotted in figure 4 (b). This figure has a character altogether 
different from the foregoing. In  the present figure, not only do the various curves 
not coincide, but also they possess different characteristics depending upon the 
point in question. Further, upon taking cognizance of the different abscissa 
scales in figures 4 (a )  and (b), i t  is clear that $% and $I decay much faster with 
increasing distance from the wall than do &. and 3;. 

The disturbance velocities and the resultant $ow 
The components u’ and v‘ of the disturbance flow field are given by (8). Since a 
velocity is a real quantity, only the real parts of these expressions are taken. The 
forthcoming discussion will be focused on the neutral stability case; consequently 
ci = 0. For these conditions, (8) becomes 

(15a) 

(15 b )  

The factor I is a proportionality constant that is introduced in recognition of the 
fact that the level of $ is arbitrarily assigned (that is, $, = 1 a t  Y = 1). 

By employing (15 a )  and (15 b), the vector velocity field of the disturbance can be 
constructed. This has been carried out for the neutral stability case described 
under point no. 2 in the legends of figures 4 ( a )  and ( b ) .  The vector field thus 
obtained is plotted in figure 5 .  The abscissa of this figure represents a distance of 
one wavelength in the streamwise direction, while the ordinate gives the distance 
from the wall. Therefore, the plane of the figure corresponds to the physical space 
in which the flow takes place. The vector at each point gives the direction and the 
relative magnitude of the disturbance velocity. The information shown in this 
figure corresponds to t = 0. 

From the figure, one sees that the disturbance velocity, which is zero at the 
wall, increases quite rapidly and reaches a maximum at the critical layer. At 
still larger distances from the wall, the so-called phase shift occurs; that is, there 
is a change of sign in the u‘ velocity component. By studying the column of 
vectors at either ax = 0 or ax = n, it is seen that the phase shift occurs at  
y/8* 1.9. The general appearance of the figure is that of a series ‘of vortices 
respectively centred at  the positions of phase shift on the lines ax = 0, n-, 2n, etc. 
The successive vortices are mirror images of each other as reflected about the 
planes ax = - in, Jn, $n, etc. A diagram having a form similar to that of figure 5 
is presented by Kurtz & Crandall (1962) for the Blasius flow. 

It is next of interest to construct the resultant flow (mainflow plus disturbance). 
However, before this superposition can be carried out, it is necessary to specify 

u’/Us = I[$; cosa(x -c,  t )  - $ksina(x - c, t)], 

v’/& = I[$,sina(x-c,t) +$icosa(x-c,t)]. 



Stability of boundary layer on a moving surface 155 

the magnitude of the scale factor I that appears in equations (15). In  this 
connexion, use is made of the procedure proposed by Schlichting (1950) for the 
Blasius flow; that is, the root-mean-square value of u‘ is averaged across the 
boundary layer and set equal to 5 per cent of Us. This choice is made here only for 
convenience, and nothing is being implied about the limitations on the size of the 
perturbations that are consistent with linearized theory. 

5 

4 

3 

R 

2 a 
2 

1 

0 

--r----I 1 I I I I I 

I I I I I I I I 1 

-kn -in 0 in $l ;n n in 

ax 

FIGERE 5. The vector velocity field of the disturbance. 

Once the scale factor has been determined, the resultant streamwise velocity 
(u + 5’) can be constructed. The computations have been carried out for the same 
neutral stability case as in the foregoing (point no. 2 in the legends of figure 4 )  
and for t = 0. The velocity profiles thus obtained are plotted in figure 6 at four 
stations, ax = 0, in-, n-, and gn-. The solid lines represent the resultant velocity 
field, while the dashed lines represent the mainflow. 

The resultant velocity profiles at  ax  = 0 and ax  = n- are markedly affected by 
the disturbance, while those at  ax = &T and $71 are almost coincident with the 
mainflow. The degree of distortion a t  other stations will lie intermediate to the 
aforementioned extremes. In  any of the profiles, the largest effect of the distur- 
bance velocity is manifested at the critical layer. At the station ax = 0, there is a 
reverse flow in the outer regions of the profile. These findings are consistent with 
the vector diagram of figure 5. 

Other interesting characteristics of the disturbance flow field include the root- 
mean-square (r.m.s) velocities. Upon averaging (15)  over one period, one finds 

JtP/U, = (I/ J2) J($i2 +$;’), 

472lq = (Id42) d$: + $3, 
(16a)  

(16b)  
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where the notation - denotes the time average. These expressions are strictly 
applicable on the neutral stability curve. The scale factor I is determined as 
described earlier. 

The root-mean-square velocity distributions have been evaluated for the same 
neutrally stable case as previously considered. These results are shown in figure 7 ,  
where the u’ distribution is the solid curve and the v‘ distribution is the dashed 
curve. The former is referred to the left-hand ordinate and the latter to the right- 
hand ordinate. 

Critical 

0 0 5  1.0 0 0.5 1.0 0 0 5  1.0 0 0 5  1.0 
FIGURE 6. The resultant velocity profile (mainflow plus disturbance). 

-_ , Resultant flow, (U  + u’)/U,; - - - -, mainflow, UjU,. 
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YlS* 
FIGURE 7. Distribution of the root-mean-square disturbance velocities. 

Ed = 0; a* = 0.203; Re* = 3860. 

N 

The distribution of 2/uf2 peaks quite sharply a t  the critical layer, whereafter i t  
decreases and then passes through zero at the point of phase shift. The dis- 
continuous slope at  the latter point results from the fact that negative values of 
u’ are suppressed in the presentation of 4 ~ ’ ~ .  If it had been chosen to plot negative 
values of JZ2, then a smooth curve would have resulted. The JT2 distribution 
displays a broader maximum which occurs beyond the critical layer. It is inter- 
esting to observe that 4 3  is much smaller than 2/uf2 in the inner portion of the 

N 

N 
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boundary layer. On the other hand, the two components are of comparable 
magnitude in the outer portion of the boundary layer. 

Two other important characteristics of the disturbance flow are the distribu- 
tions of the kinetic energy and the Reynolds stress. After suitable manipulation 
of (15) and (16), one can derive 

(?? + ?)/ u: = *T2[&2 -t &z + a"$: + $31, ( 1 7 a )  

(17b)  
rv - -  - -  
u r v f p :  = &I2a[fg 56% - #J; $J. 

The numerical evaluation of ( 1 7 )  leads to the distributions that are pictured in 
figure 8. These results pertain to the same neutrally stable case singled out for 
prior study. 

b 
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FIGURE 8. Distribution of the kinetic energy of the disturbance and the Reynolds 
stress. Et = 0; a* = 0.203; Re* = 3860. 

Both the kinetic energy and the Reynolds stress distributions are seen to  peak 
sharply at  the critical layer. Beyond their respective maxima, both curves drop 
off quite rapidly and take on very small values thereafter. It is especially inter- 
esting to note that the Reynolds stress is negative over the entire outer portion 
of the boundary layer. 

The aforementioned coincidence of the maxima with the location of the critical 
layer appears to hold only for points on the neutral stability curve that lie 
in the neighbourhood of the critical Reynolds number. In  the discussion of 
figure 3, it  was noted that the critical layer moves closer to the wall as the 
Reynolds number increases. The maxima of the u' r.m.s., the kinetic energy, and 
the shear-stress distributions also move inward, but to a lesser extent. The net 
result is that these maxima fall beyond the critical layer for larger Reynolds 
numbers. 



158 F .  K .  TSOU, E. M .  Sparrow and E. F .  Kurtz 

6. The energy balance of the disturbance flow 

ponents, it  can be shown (for instance, Schlichting 1950) 
If one considers the momentum equations for the disturbance velocity com- 

in which E is the kinetic energy of the disturbance motion contained within a 
fluid volume extending over one wavelength in x, from the wall to infinity in y, 
and having unit width, that is 

(18a) 

Equation (18) represents the energy balance for the disturbance flow. 
The time rate of change of the kinetic energy dEldt is seen to equal the difference 

of two quantities that appear on the right. In  the first term, a positive u‘d is 
usually intuitively associated with a negative d U / d Y ,  and a negative u‘v‘ is 
similarly associated with a positive d Uld Y .  Therefore, when taken together with 
its multiplicative minus sign, this term should normally be positive. Physically, 
this positive characteristic means that energy is drawn from the mainflow into 
the disturbance flow. Thus, the Reynolds stress term is a de-stabilizing factor. 
On the other hand, when taken together with its sign, the second term on the 
right is always negative, since the integrand is intrinsically positive. This term 
represents energy dissipation and hence is a stabilizing factor. 

When dE/dt  < 0, the rate of energy dissipation by the disturbance exceeds the 
rate at which energy is supplied by the mainflow. The flow is therefore stable. By 
similar reasoning, it is evident that the flow is unstable when dE/dt > 0 and 
neutrally stable when dEjdt = 0. 

It is of interest to investigate the energy balance criterion in the neighbourhood 
of the neutral stability curve. To this end, (15 a )  and (1 5 b )  are introduced into the 
energy balance, and after considerable manipulation the following equation can 

E = cJm 2 y=o 1’ x = o  (u’2+v’2)dxdy. 

be derived: 

in which 

di3 
= ~ o l e R d Y - ~ o l e D d Y  = ER-ED, 

The dimensionless variables and t are defined as 

E = E/E,, t = t / T .  (20) 
The reference quantity E, is the kinetic energy of the mainflow contained within 
a fluid volume extending over one wavelength in x, from the wall to 6 in y, and 
having unit width, that is 

and c1 = 1; g 2 d Y  = 0.094817. 
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Furthermore, the second reference quantity r is the time required for the 
disturbance wave to propagate a distance of one wavelength A, that is, r = A/c,. 

It will first be demonstrated that d,!?ldt does, in fact, change sign when the 
neutral stability curve is crossed. To this end, table 2 has been prepared. The 
table shows results for four points that lie along a vertical linein the (a, Re)-plane 
near the critical Reynolds number. Two of the points are in the region of stability, 
while the other two points are in the region of instability. However, as witnessed 
by the exceedingly small values of Ci, all points are very, very near the neutral 
stability curve. Considering the values of E ,  - ED, it is evident that d E / d f  < 0 for 
points characterized by Ci < 0 and > 0 for points characterized by Ci > 0. It is 
thereby demonstrated that the present results are consistent with the energy 
criterion for stability. 

Re* U* ci x 104 E R X  10 E ~ x 1 0  

3860 0.203085 - 0.570360 0.122311 0.123209 
3860 0.203585 - 0.227787 0.122834 0.123311 
3860 0.204200 0.1841 97 0.1 23467 0.123437 
3860 0.204600 0.446957 0.123871 0.123521 

TABLE 2. Energy balance criterion crossing the neutral curve 

- 
Re* a* c, ci x 104 ERX10 E D x 1 0  

3,860 0.203085 0'741386 - 0.570368 1'22311 1.23209 
10,000 0.113550 0.798849 + 0.309486 0.700040 0.696251 
34,627 0.068680 0.851985 + 0.191973 0.354115 0,352299 

TABLE 3. Energy balance criterion for points on the neutral curve 

Further information on the energy balance can be obtained by considering 
several widely separated points that lie on (or very close to) the neutral stability 
curve. -t These points are described in table 3, in which the corresponding values 
of E, and E D  are also listed. It may be observed that, in the extreme case, the 
difference between ER and ED is only 0.5 per cent. To give perspective to this 
finding, comparison may be made with an evaluation of the energy criterion by 
Schlichting (1950) for the Blasius flow. At two points on the neutral stability curve 
that was computed by classical asymptotic methods, Schlichting found differences 
between E, and ED of 11 and 14 per cent respectively. 

Further insights may be gleaned by inspection of the distributions of eR and e, 
that are shown in figure 9. The figure is divided into three parts that pertain 
respectively to the three cases described in table 3. For the condition of neutral 
stability, the area under an e, curve should equal the area under the corre- 
sponding e, curve. 

In  general, these functions take on their largest values in the range of small 
y/S* and are of relatively small magnitude for most of the span of the boundary 
layer. It is for this reason that the curves have been truncated. The maximum 
value of the dissipation e, occurs at the wall, where the Reynolds stress contribu- 

t These points were actually employed in constructing the neutral curve. 
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tion e,is zero. On the other hand, the maximum value of the Reynolds stress term 
occurs near the critical layer, where the dissipation is essentially zero, The 
aforementioned maximum is situated to the right of the critical layer at the higher 
Reynolds numbers. It is also interesting to note that the e, distribution takes on 
negative values for a range of y/6* after the maximum is achieved. This charac- 
teristic was displayed by u’v’/Ui in figure 8. Since the two functions are closely 
related, this common behaviour is expected. 

cv 

FIGURE 9. Distribution of the dissipation and Reynolds stress terms for the disturbance 
energy balance. (a) a* = 0.203; Re* = 3860; a, = 0.741; Ei = 0. ( 6 )  CL* = 0.114; 
Re* = 10,000; a, = 0.799, ai = 0. (c) a* = 0.069; Re* = 34,600; 2, = 0.852; Ei = 0. 

As the Reynolds number increases, the magnitude and range of the dissipation 
term are sharply diminished. This is consistent with the approach to the inviscid 
flow condition. In  order to preserve the equality of E, and ED, there is a corre- 
sponding diminution of eR. 

As a final note, it  is interesting to relate the range of y/6* encountered in the 
present results with that predicted by classical asymptotic analysis. In  the latter, 
Lin (1955) postulates that viscous effects are confined to a region adjacent to the 
wall the thickness of which is proportional to (a Re)-$. Thus, for the three cases 
considered in table 3 and figure 9, the predicted thicknesses would be 1,0.89 and 
0.69, where all values are taken relative to that for the case Re = 3860. Since the 
viscous layer is not precisely defined, its thickness is taken here as corresponding 
to the point where e, is zero. Using this criterion, one may deduce the relative 
thicknesses from figure 9 as 1,0.91, and 0.71. The agreement of these values with 
those mentioned above is quite satisfactory. 

The authors wish to express their gratitude to Dr R. J.Goldstein for his 
suggestions and assistance during the course of this investigation. Thanks are 
also due to Dr D. D. Joseph for his valuable discussions. 
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